

mincss - Clears the junk out of your CSS

mincss is a Python library that makes it possible to evaluate
which CSS is actually being used. It does this by download the whole
page(s) and finds all inline and linked CSS and analyses which
selectors are still in use somewhere.

Optionally, you can use PhantomJS [http://phantomjs.org/] to
download the HTML source from a URL which means it will at least load
all the Javascript that gets executed onload.

Installation should be as simple as pip install mincss. The code
is available on Github [https://github.com/peterbe/mincss].

	Getting started

	Supported Features and Limitations

	API

	Changelog
	v0.8.1 (2013-04-05)

	v0.8.0 (2013-02-26)

	v0.7.0 (2013-02-13)

	v0.6.1 (2013-02-12)

	v0.6.0 (2013-02-01)

	v0.5.0 (2013-01-24)

	v0.1 (2013-01-14)

Indices and tables

	Index

	Module Index

	Search Page

Getting started

Suppose you have a page like this:

<!doctype html>
<html>
 <head>
 <style type="text/css">
 .foo, input:hover { color: black; }
 .bar { color: blue; }
 </style>
 </head>
 <body>
 <div id="content">
 <p class="foo">Foo!</p>
 </div>
 </body>
</html>

And, let’s assume that this is available as
http://localhost/page.html.

Now, let’s use mincss as follows:

>>> from mincss.processor import Processor
>>> p = Processor()
>>> p.process('http://localhost/page.html')
>>> inline = p.inlines[0]
>>> inline.before
'\n .foo, input:hover { color: black; }\n .bar { color: blue; }\n '
>>> inline.after
'\n .foo { color: black; }\n '

As you can see, it automatically discovered that the input:hover
and the .bar selectors are not used in the HTML DOM tree.

If you have phantomjs installed and can do things like
$ phantomjs --help on your command line you can run mincss like
this:

>>> from mincss.processor import Processor
>>> p = Processor(phantomjs=True)
>>> p.process('http://localhost/page-with-javascript.html')

Supported Features and Limitations

Things that work:

	Any selector that lxml‘s CSSSelector can match such as
#foo > .bar input[type="submit"]

	media queries are supported (this is treated as nested CSS basically)

	keyframes are left untouched

	You can manually over selectors that should be untouched for things
you definitely know will be needed by Javascript code but isn’t part
of the initial HTML tree.

	You can analyze multiple URLs and find the common CSS amongst them.
(This doesn’t work for inline CSS)

	Comments are left untouched and minute whitespace details are
preseved so the generated output looks similar to its input, but
with the selectors not needed removed.

	A proxy server apps is available that can help you preview the
result of just one URL.

Things that don’t yet work:

	Javascript events that manipulate the DOM tree.
You can use PhantomJS to do the downloading but it still won’t get
every possible piece of HTML generated based on complex Javascript.

	keyframes are always left untouched even if it’s never referenced

	Broken HTML or broken/invalid CSS isn’t supported and good results can
not be guaranteed.

Things that don’t work:

	link tags wrapped in IE-only style comments (e.g <!--[if lte IE
7]>) is not supported.

API

This is work in progress and is likely to change in future version

	process.Processor([debug=False, preserve_remote_urls=True])
Creates a processor instance that you can feed HTML and URLs.

The arguments:

	debug=False
Currently does nothing particular.

	preserve_remote_urls=True
If you run a URL like http://www.example.org that references
http://cdn.cloudware.com/foo.css which contains
url(/background.png) then the CSS will be rewritten to become
url(http://cdn.cloudware.com/background.png)

	phantomjs=None
If True will default to phantomjs, If a string it’s
assume it’s the path to the executable phantomjs path.

	phantomjs_options={}
Additional options/switches to the phantomjs command. This
has to be a dict. So, for example {'script-encoding': 'latin1'}
becomes --script-encoding=latin1.

	optimize_lookup=True
If true, will make a set of all ids and class names in all
processed documents and use these to avoid some expensive CSS
query searches.

Instances of this allows you to use the following methods:

	process(*urls)
Downloads the HTML from that URL(s) and expects it to be 200 return
code. The content will be transformed to a unicode string in UTF-8.

Once all URLs have been processed the CSS is analyzed.

	process_url(url)
Given a specific URL it will download it and parse the HTML. This
method will download the HTML then called process_html().

	process_html(html, url)
If you for some reason already have the HTML you can jump straight
to this method. Note, you still need to provide the URL where you
got the HTML from so it can use that to download any external CSS.

The Processor instance will make two attributes available

	instance.inlines
A list of InlineResult instances (see below)

	instance.links
A list of LinkResult instances (see below)

	InlineResult

This is where the results are stored for inline CSS. It holds the
following attributes:

	line
Which line in the original HTML this starts on

	url
The URL this was found on

	before
The inline CSS before it was analyzed

	after
The new CSS with the selectors presumably not used removed

	LinkResult

This is where the results are stored for all referenced links to CSS
files. i.e. from things like <link rel="stylesheet"
href="foo.css">
It contains the following attributes:

	href
The href attribute on the link tag. e.g. /static/main.css

	before
The CSS before it was analyzed

	after
The new CSS with the selectors presumably not used removed

Changelog

v0.8.1 (2013-04-05)

The file download.js was missing from the tarball.

v0.8.0 (2013-02-26)

Much faster! Unless you pass Processor(optimize_lookup=False) when
creating the processor instance. See
http://www.peterbe.com/plog/mincss-0.8

v0.7.0 (2013-02-13)

Fixed bug with make absolute url of url like http://peterbe.com +
./style.css. Thanks @erfaan!

v0.6.1 (2013-02-12)

The proxy app would turn <script src=”foo”></script> into <script
src=”http://remote/foo”/>. Same for iframe, textarea and divs.

v0.6.0 (2013-02-01)

New option, phantomjs that allows you to download the HTML using
phantomjs instead of regular Python’s urllib.

v0.5.0 (2013-01-24)

New option preserve_remote_urls to Processor() class. Useful when
the hrefs in link tags are of different domain than the URL you’re
processing.

v0.1 (2013-01-14)

Initial release.

Index

 A
 | C
 | F
 | G

A

 	
 	api

C

 	
 	changelog

F

 	
 	features

G

 	
 	gettingstarted

 nav.xhtml

 Table of Contents

 		mincss - Clears the junk out of your CSS

 		Getting started

 		Supported Features and Limitations

 		API

 		Changelog

 		v0.8.1 (2013-04-05)

 		v0.8.0 (2013-02-26)

 		v0.7.0 (2013-02-13)

 		v0.6.1 (2013-02-12)

 		v0.6.0 (2013-02-01)

 		v0.5.0 (2013-01-24)

 		v0.1 (2013-01-14)

_static/file.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment-close.png

_static/comment-bright.png

